 Being a GATE aspirant, it is very important that you first know what is the syllabus for GATE Geology & Geophysics (GG) Examination before you start preparation.
 Keep handy the updated copy of GATE Geology & Geophysics (GG) Examination syllabus.
 Go through the complete and updated syllabus, highlight important subjects and topics based on Past GATE Geology & Geophysics (GG) Papers and Weightage plus your understanding of particular subject or topic.
 Keep tracking and prioritising your preparationtodo list and the syllabus for the GATE Geology & Geophysics (GG) examination.
GATE 2018 Geology & Geophysics (GG) Syllabus
Part A : Common Section
Earth and Planetary system – size, shape, internal structure and composition of the earth; concept of isostasy; elements of seismology body and surface waves, propagation of body waves in the earths interior; Gravitational field of the Earth; geomagnetism and paleomagnetism; continental drift; plate tectonics relationship with earthquakes, volcanism and mountain building; continental and oceanic crust composition, structure and thickness.
Weathering and soil formation; landforms created by river, wind, glacier, ocean and volcanoes. Basic structural geology – stress, strain and material response; brittle and ductile deformation; nomenclature and classification of folds and faults. Crystallography basic crystal symmetry and concept of point groups. Mineralogy silicate crystal structure and determinative mineralogy of common rock forming minerals. Petrology mineralogy and classification of common igneous, sedimentary and metamorphic rocks. Geological time scale – geochronology and absolute time. Stratigraphic principles; major stratigraphic divisions of India. Geological and geographical distribution of mineral, coal and petroleum resources of India.
Introduction to remote sensing. Engineering properties of rocks and soils. Ground water geology.
Principles and applications of gravity, magnetic, electrical, electromagnetic, seismic and radiometric methods of prospecting for oil, mineral and ground water; introductory well logging.
Part B (Section1): Geology
Geomorphic processes and agents; development and evolution of landforms; slope and drainage; processes in deep oceanic and nearshore regions; quantitative and applied geomorphology.
Mechanism of rock deformation; primary and secondary structures; geometry and genesis of folds, faults, joints and unconformities; cleavage, schistosity and lineation; methods of projection; tectonites and their significance; shear zones; superposed folding; basementcover relationship.
Crystallography – symmetry, forms and twinning; crystal chemistry; optical mineralogy, classification of minerals, diagnostic physical and optical properties of rock – forming minerals.
Cosmic abundance of elements; meteorites; geochemical evolution of the earth; geochemical cycles; distribution of major, minor and trace elements in crust and mantle; elements of geochemical thermodynamics; isotope geochemistry; geochemistry of waters including solution equilibria and waterrock interaction.
Igneous rocks classification, forms and textures; magmatic differentiation; binary and ternary phase diagrams; major and trace elements as monitors of partial melting and magma evolutionary processes. Sedimentary rocks texture and structure; sedimentary processes and environments, sedimentary facies, provencance and basin analysis. Metamorphic rocks structures and textures.
Physicochemical conditions of metamorphism and concept of metamorphic facies, grade and baric types; metamorphism of pelitic, mafic and impure carbonate rocks; role of fluids in metamorphism; metamorphic PTt paths and their tectonic significance. Association of igneous, sedimentary and metamorphic rocks with tectonic setting. Igneous and metamorphic provinces and important sedimentary basins of India.
Morphology, classification and geological significance of important invertebrates, vertebrates, plant fossils and microfossils.
Principles of Stratigraphy and concepts of correlation lithostratigraphy, biostratigraphy and chronostratigraphy. Indian stratigraphy Precambrian and Phanerozoic. Overview of Himalayan Geology.
Oremineralogy and optical properties of ore minerals; ore forming processes visàvis orerock association (magmatic, hydrothermal, sedimentary, supergene and metamorphogenic ores); fluid inclusions as an ore genetic tool. Coal and petroleum geology; marine mineral resources. Prospecting and exploration of economic mineral deposits – sampling, ore reserve estimation, geostatistics, mining methods. Ore dressing and mineral economics. Origin and distribution of mineral, fossil and nuclear fuel deposits in India.
Engineering properties of rocks and soils; rocks as construction materials; role of geology in the construction of engineering structures including dams, tunnels and excavation sites; natural hazards. Ground water geology exploration, well hydraulics and water quality. Basic principles of remote sensing energy sources and radiation principles, atmospheric absorption, interaction of energy with earths surface, aerialphoto interpretation, multispectral remote sensing in visible, infrared, thermal IR and microwave regions, digital processing of satellite images. GIS basic concepts, raster and vector mode operations.
Part B (Section2): Geophysics

:
Basic concept of EM induction in the earth, Skindepth, elliptic polarization, inphase and quadrature components, Various EM methods, measurements in different sourcereceiver configurations,. Earths natural electromagnetic field, tellurics, magnetotellurics; geomagnetic depth sounding principles, electromagnetic profiling, Time domain EM method, EM scale modeling, processing of EM data and interpretation. Geological applications including groundwater, mineral and hydrocarbon exploration.
The earth as a planet; different motions of the earth; gravity field of the earth, Clairauts theorem, size and shape of earth; geomagnetic field, paleomagnetism; Geothermics and heat flow; seismology and interior of the earth; variation of density, velocity, pressure, temperature, electrical and magnetic properties of the earth; earthquakescauses and measurements, magnitude and intensity, focal mechanisms, earthquake quantification, source characteristics, seismotectonics and seismic hazards; digital seismographs,
Scalar and vector potential fields; Laplace, Maxwell and Helmholtz equations for solution of different types of boundary value problems in Cartesian, cylindrical and spherical polar coordinates; Greens theorem; Image theory; integral equations in potential theory; Eikonal equation and Ray theory.
Absolute and relative gravity measurements; Gravimeters, Land, airborne, shipborne and borehole gravity surveys; various corrections for gravity data reduction free air, Bouguer and isostatic anomalies; density estimates of rocks; regional and residual gravity separation; principle of equivalent stratum; data enhancement techniques, upward and downward continuation; derivative maps, wavelength filtering; preparation and analysis of gravity maps; gravity anomalies and their interpretation anomalies due to geometrical and irregular shaped bodies, depth rules, calculation of mass.
Elements of Earths magnetic field, units of measurement, magnetic susceptibility of rocks and measurements, magnetometers, Land, airborne and marine magnetic surveys, Various corrections applied to magnetic data, IGRF, Reduction to Pole transformation, Poissons relation of gravity and magnetic potential field, preparation of magnetic maps, upward and downward continuation, magnetic anomaliesgeometrical shaped bodies, depth estimates, Image processing concepts in processing of magnetic anomaly maps; Interpretation of processed magnetic anomaly data. Applications of gravity and magnetic methods for mineral and oil exploration.
Conduction of electricity through rocks, electrical conductivities of metals, nonmetals, rock forming minerals and different rocks, concepts of D.C. resistivity measurement, various electrode configurations for resistivity sounding and profiling, application of filter theory, Typecurves over multilayered structures, DarZarrouck parameters, reduction of layers, coefficient of anisotropy, interpretation of resistivity field data, equivalence and suppression, selfpotential and its origin, field measurement, Induced polarization, time and frequency domain IP measurements; interpretation and applications of IP, groundwater exploration, mineral exploration, environmental and engineering applications.
Seismic methods of prospecting; Elastic properties of earth materials; Reflection, refraction and CDP surveys; land and marine seismic sources, generation and propagation of elastic waves, velocity depth models, geophones, hydrophones, recording instruments (DFS), digital formats, field layouts, seismic noises and noise profile analysis, optimum geophone grouping, noise cancellation by shot and geophone arrays, 2D and 3D seismic data acquisition, processing and interpretation; CDP stacking charts, binning, filtering, dipmoveout, static and dynamic corrections, Digital seismic data processing, seismic deconvolution and migration methods, attribute analysis, bright and dim spots, seismic stratigraphy, high resolution seismics, VSP, AVO. Reservoir geophysics.
Geophysical signal processing, sampling theorem, aliasing, Nyquist frequency, Fourier series, periodic waveform, Fourier and Hilbert transform, Ztransform and wavelet transform; power spectrum, delta function, auto correlation, cross correlation, convolution, deconvolution, principles of digital filters, windows, poles and zeros.
Principles and techniques of geophysical welllogging, SP, resistivity, induction, gamma ray, neutron, density, sonic, temperature, dip meter, caliper, nuclear magnetic, cement bond logging, micrologs. Quantitative evaluation of formations from well logs; well hydraulics and application of geophysical methods for groundwater study; application of bore hole geophysics in ground water, mineral and oil exploration.
Radioactive methods of prospecting and assaying of mineral (radioactive and non radioactive) deposits, halflife, decay constant, radioactive equilibrium, G M
counter, scintillation detector, semiconductor devices, application of radiometric for exploration, assaying and radioactive waste disposal.
Basic concepts of forward and inverse problems, Illposedness of inverse problems, condition number, nonuniqueness and stability of solutions; L1, L2 and Lp norms, overdetermined, underdetermined and mixed determined inverse problems, quasilinear and nonlinear methods including Tikhonovs regularization method, Singular Value Decomposion, BackusGilbert method, simulated annealing, genetic algorithms and artificial neural network.
Click Here To Download Copy of GATE 2018 Geology & Geophysics (GG) Syllabus
GATE Geology & Geophysics (GG) Test/Exam Pattern (Based on last 3 years papers)
Good Score For GATE Geology & Geophysics (GG) Considered To Be: 55