 Being a GATE aspirant, it is very important that you first know what is the syllabus for GATE Instrumentation (IN) Examination before you start preparation.
 Keep handy the updated copy of GATE Instrumentation (IN) Examination syllabus.
 Go through the complete and updated syllabus, highlight important subjects and topics based on Past GATE Instrumentation (IN) Papers and Weightage plus your understanding of particular subject or topic.
 Keep tracking and prioritising your preparationtodo list and the syllabus for the GATE Instrumentation (IN) examination.
GATE 2018 Instrumentation (IN) Syllabus
Section I: Engineering Mathematics

Linear Algebra:
Matrix algebra, systems of linear equations, Eigen values and Eigen vectors.

Calculus:
Mean value theorems, theorems of integral calculus, partial derivatives, maxima and minima, multiple integrals, Fourier series, vector identities, line, surface and volume integrals, Stokes, Gauss and Greens theorems.

Differential equations:
First order equation (linear and nonlinear), higher order linear differential equations with constant coefficients, method of variation of parameters, Cauchys and Eulers equations, initial and boundary value problems, solution of partial differential equations: variable separable method.

Analysis of complex variables:
Analytic functions, Cauchys integral theorem and integral formula, Taylors and Laurents series, residue theorem, solution of integrals.

Probability and Statistics:
Sampling theorems, conditional probability, mean, median, mode and standard deviation, random variables, discrete and continuous distributions: normal, Poisson and binomial distributions.

Numerical Methods:
Matrix inversion, solutions of nonlinear algebraic equations, iterative methods for solving differential equations, numerical integration, regression and correlation analysis.
Section II: Electrical Circuits

Topics – Part A:
Voltage and current sources: independent, dependent, ideal and practical; vi relationships of resistor, inductor, mutual inductor and capacitor; transient analysis of RLC circuits with dc excitation.

Topics – Part B:
Kirchoffs laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems.

Topics – Part C:
Peak, average and rms values of ac quantities; apparent, active and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements.

Topics – Part D:
Oneport and twoport networks, driving point impedance and admittance, open, and short circuit parameters.
Section III: Signals and Systems

Topics:
Periodic, aperiodic and impulse signals; Laplace, Fourier and ztransforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters.
Section IV: Control Systems

Topics:
Feedback principles, signal flow graphs, transient response, steadystateerrors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and leadlag compensators, statespace representation of systems; timedelay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; onoff, P, PI, PID, cascade, feedforward, and ratio controllers.
Section V: Analog Electronics

Topics:
Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of opamps: difference amplifier, adder, subtractor, integrator, differentiator, instrumentation amplifier, precision rectifier, active filters and other circuits. Oscillators, signal generators, voltage controlled oscillators and phase locked loop.
Section VI: Digital Electronics

Topics:
Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multivibrators, sequential circuits, flipflops, shift registers, timers and counters; sampleandhold circuit, multiplexer, analogtodigital (successive approximation, integrating, flash and sigmadelta) and digitaltoanalog converters (weighted R, R2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, 8bit microprocessor and microcontroller: applications, memory and inputoutput interfacing; basics of data acquisition systems.
Section VII: Measurements

Topics:
SI units, systematic and random errors in measurement, expression of uncertainty – accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Qmeter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding.
Section VIII: Sensors and Industrial Instrumentation

Topics:
Resistive, capacitive, inductive, piezoelectric, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (differential pressure, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement.
Section IX: Communication and Optical Instrumentation

Topics:
Amplitude and frequency modulation and demodulation; Shannon’s sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude, phase, frequency, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photodiode, light dependent resistor and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing.
Click Here To Download Copy of GATE 2018 Instrumentation (IN) Syllabus
GATE Instrumentation (IN) Test/Exam Pattern (Based on last 3 years papers)
Good Score For GATE Instrumentation (IN) Considered To Be: 55